We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
407 \(\Rightarrow\) 14 |
Effective equivalents of the Rasiowa-Sikorski lemma, Bacsich, P. D. 1972b, J. London Math. Soc. Ser. 2. |
14 \(\Rightarrow\) 72 |
Prime ideal theorems for Boolean algebras and the axiom of choice, Tarski, A. 1954b, Bull. Amer. Math. Soc. |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
407: | Let \(B\) be a Boolean algebra, \(b\) a non-zero element of \(B\) and \(\{A_i: i\in\omega\}\) a sequence of subsets of \(B\) such that for each \(i\in\omega\), \(A_i\) has a supremum \(a_i\). Then there exists an ultrafilter \(D\) in \(B\) such that \(b\in D\) and, for each \(i\in\omega\), if \(a_i\in D\), then \(D\cap\ A_i\neq\emptyset\). |
14: | BPI: Every Boolean algebra has a prime ideal. |
72: | Artin-Schreier Theorem: Every field in which \(-1\) is not the sum of squares can be ordered. (The ordering, \(\le \), must satisfy (a) \(a\le b\rightarrow a + c\le b + c\) for all \(c\) and (b) \(c\ge 0\) and \(a\le b\rightarrow a\cdot c\le b\cdot c\).) |
Comment: