We have the following indirect implication of form equivalence classes:

317 \(\Rightarrow\) 154
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
317 \(\Rightarrow\) 14 Limitations on the Fraenkel-Mostowski method of independence proofs, Howard, P. 1973, J. Symbolic Logic
14 \(\Rightarrow\) 154 Kategoriesatze und multiples Auswahlaxiom, Brunner, N. 1983c, Z. Math. Logik Grundlagen Math.

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
317:

Weak Sikorski Theorem:  If \(B\) is a complete, well orderable Boolean algebra and \(f\) is a homomorphism of the Boolean algebra \(A'\) into \(B\) where \(A'\) is a subalgebra of the Boolean algebra \(A\), then \(f\) can be extended to a homomorphism of \(A\) into \(B\).

14:

BPI: Every Boolean algebra has a prime ideal.

154:

Tychonoff's Compactness Theorem for Countably Many \(T_2\) Spaces: The product of countably many \(T_2\) compact spaces is compact.

Comment:

Back