We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
50 \(\Rightarrow\) 14 |
A survey of recent results in set theory, Mathias, A.R.D. 1979, Period. Math. Hungar. |
14 \(\Rightarrow\) 141 |
Generalizing Konigs infinity lemma, Cowen, R.H. 1977b, Notre Dame J. Formal Logic |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
50: | Sikorski's Extension Theorem: Every homomorphism of a subalgebra \(B\) of a Boolean algebra \(A\) into a complete Boolean algebra \(B'\) can be extended to a homomorphism of \(A\) into \(B'\). Sikorski [1964], p. 141. |
14: | BPI: Every Boolean algebra has a prime ideal. |
141: | [14 P(\(n\))] with \(n = 2\): Let \(\{A(i): i\in I\}\) be a collection of sets such that \(\forall i\in I,\ |A(i)|\le 2\) and suppose \(R\) is a symmetric binary relation on \(\bigcup^{}_{i\in I} A(i)\) such that for all finite \(W\subseteq I\) there is an \(R\) consistent choice function for \(\{A(i): i \in W\}\). Then there is an \(R\) consistent choice function for \(\{A(i): i\in I\}\). |
Comment: