We have the following indirect implication of form equivalence classes:

50 \(\Rightarrow\) 270
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
50 \(\Rightarrow\) 14 A survey of recent results in set theory, Mathias, A.R.D. 1979, Period. Math. Hungar.
14 \(\Rightarrow\) 270 Restricted versions of the compactness theorem, Kolany, A. 1991, Rep. Math. Logic

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
50:

Sikorski's  Extension Theorem: Every homomorphism of a subalgebra \(B\) of a Boolean algebra \(A\) into a complete Boolean algebra \(B'\) can be extended to a homomorphism of \(A\) into \(B'\). Sikorski [1964], p. 141.

14:

BPI: Every Boolean algebra has a prime ideal.

270:

\(CT_{\hbox{fin}}\): The compactness theorem for propositional logic restricted to sets of formulas in which each variable occurs only in a finite number of formulas.

Comment:

Back