We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
345 \(\Rightarrow\) 14 |
Topologie, Analyse Nonstandard et Axiome du Choix, Morillon, M. 1988, Universit\'e Blaise-Pascal |
14 \(\Rightarrow\) 141 |
Generalizing Konigs infinity lemma, Cowen, R.H. 1977b, Notre Dame J. Formal Logic |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
345: | Rasiowa-Sikorski Axiom: If \((B,\land,\lor)\) is a Boolean algebra, \(a\) is a non-zero element of \(B\), and \(\{X_n: n\in\omega\}\) is a denumerable set of subsets of \(B\) then there is a maximal filter \(F\) of \(B\) such that \(a\in F\) and for each \(n\in\omega\), if \(X_n\subseteq F\) and \(\bigwedge X_n\) exists then \(\bigwedge X_n \in F\). |
14: | BPI: Every Boolean algebra has a prime ideal. |
141: | [14 P(\(n\))] with \(n = 2\): Let \(\{A(i): i\in I\}\) be a collection of sets such that \(\forall i\in I,\ |A(i)|\le 2\) and suppose \(R\) is a symmetric binary relation on \(\bigcup^{}_{i\in I} A(i)\) such that for all finite \(W\subseteq I\) there is an \(R\) consistent choice function for \(\{A(i): i \in W\}\). Then there is an \(R\) consistent choice function for \(\{A(i): i\in I\}\). |
Comment: