We have the following indirect implication of form equivalence classes:

50 \(\Rightarrow\) 142
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
50 \(\Rightarrow\) 14 A survey of recent results in set theory, Mathias, A.R.D. 1979, Period. Math. Hungar.
14 \(\Rightarrow\) 52 On the application of Tychonoff's theorem in mathematical proofs, L o's, J. 1951, Fund. Math.
Two applications of the method of construction by ultrapowers to analysis, Luxemburg, W.A.J. 1970, Proc. Symp. Pure. Math.
Applications of Model Theory to Algebra, Analysis and Probability, Luxemburg, 1969, 123-137
52 \(\Rightarrow\) 142 The strength of the Hahn-Banach theorem, Pincus, D. 1972c, Lecture Notes in Mathematics

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
50:

Sikorski's  Extension Theorem: Every homomorphism of a subalgebra \(B\) of a Boolean algebra \(A\) into a complete Boolean algebra \(B'\) can be extended to a homomorphism of \(A\) into \(B'\). Sikorski [1964], p. 141.

14:

BPI: Every Boolean algebra has a prime ideal.

52:

Hahn-Banach Theorem:  If \(V\) is a real vector space and \(p: V \rightarrow {\Bbb R}\) satisfies \(p(x+y) \le p(x) + p(y)\) and \((\forall t > 0)( p(tx) = tp(x) )\) and \(S\) is a subspace of \(V\) and \(f:S \rightarrow {\Bbb R}\) is linear and satisfies \((\forall  x \in S)( f(x) \le  p(x) )\) then \(f\) can be extended to \(f^{*} : V \rightarrow {\Bbb R}\) such that \(f^{*}\) is linear and \((\forall x \in V)(f^{*}(x) \le p(x))\).

142:

\(\neg  PB\):  There is a set of reals without the property of Baire.  Jech [1973b], p. 7.

Comment:

Back