We have the following indirect implication of form equivalence classes:

50 \(\Rightarrow\) 206
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
50 \(\Rightarrow\) 14 A survey of recent results in set theory, Mathias, A.R.D. 1979, Period. Math. Hungar.
14 \(\Rightarrow\) 63 clear
63 \(\Rightarrow\) 70 clear
70 \(\Rightarrow\) 206 clear

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
50:

Sikorski's  Extension Theorem: Every homomorphism of a subalgebra \(B\) of a Boolean algebra \(A\) into a complete Boolean algebra \(B'\) can be extended to a homomorphism of \(A\) into \(B'\). Sikorski [1964], p. 141.

14:

BPI: Every Boolean algebra has a prime ideal.

63:

\(SPI\): Weak ultrafilter principle: Every infinite set has a non-trivial ultrafilter.
Jech [1973b], p 172 prob 8.5.

70:

There is a non-trivial ultrafilter on \(\omega\). Jech [1973b], prob 5.24.

206:

The existence of a non-principal ultrafilter: There exists an infinite set \(X\) and a non-principal ultrafilter on \(X\).

Comment:

Back