We have the following indirect implication of form equivalence classes:

317 \(\Rightarrow\) 96
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
317 \(\Rightarrow\) 14 Limitations on the Fraenkel-Mostowski method of independence proofs, Howard, P. 1973, J. Symbolic Logic
14 \(\Rightarrow\) 107
107 \(\Rightarrow\) 96 Transversal Theory, Mirsky, [1971]

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
317:

Weak Sikorski Theorem:  If \(B\) is a complete, well orderable Boolean algebra and \(f\) is a homomorphism of the Boolean algebra \(A'\) into \(B\) where \(A'\) is a subalgebra of the Boolean algebra \(A\), then \(f\) can be extended to a homomorphism of \(A\) into \(B\).

14:

BPI: Every Boolean algebra has a prime ideal.

107:  

M. Hall's Theorem: Let \(\{S(\alpha): \alpha\in A\}\) be a collection of finite subsets (of a set \(X\)) then if

(*) for each finite \(F \subseteq  A\) there is an injective choice function on \(F\)
then there is an injective choice function on \(A\). (That is, a 1-1 function \(f\) such that \((\forall\alpha\in A)(f(\alpha)\in S(\alpha))\).) (According to a theorem of P. Hall (\(*\)) is equivalent to \(\left |\bigcup_{\alpha\in F} S(\alpha)\right|\ge |F|\). P. Hall's theorem does not require the axiom of choice.)

96:

Löwig's Theorem:If \(B_{1}\) and \(B_{2}\) are both bases for the vector space \(V\) then \(|B_{1}| = |B_{2}|\).

Comment:

Back