We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
384 \(\Rightarrow\) 14 |
"Maximal filters, continuity and choice principles", Herrlich, H. 1997, Quaestiones Math. |
14 \(\Rightarrow\) 139 | |
139 \(\Rightarrow\) 137-k |
Cancellation laws for surjective cardinals, Truss, J. K. 1984, Ann. Pure Appl. Logic |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
384: | Closed Filter Extendability for \(T_1\) Spaces: Every closed filter in a \(T_1\) topological space can be extended to a maximal closed filter. |
14: | BPI: Every Boolean algebra has a prime ideal. |
139: | Using the discrete topology on 2, \(2^{\cal P(\omega)}\) is compact. |
137-k: | Suppose \(k\in\omega-\{0\}\). If \(f\) is a 1-1 map from \(k\times X\) into \(k\times Y\) then there are partitions \(X = \bigcup_{i \le k} X_{i} \) and \(Y = \bigcup_{i \le k} Y_{i} \) of \(X\) and \(Y\) such that \(f\) maps \(\bigcup_{i \le k} (\{i\} \times X_{i})\) onto \(\bigcup_{i \le k} (\{i\} \times Y_{i})\). |
Comment: