We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
50 \(\Rightarrow\) 14 |
A survey of recent results in set theory, Mathias, A.R.D. 1979, Period. Math. Hungar. |
14 \(\Rightarrow\) 139 | |
139 \(\Rightarrow\) 389 |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
50: | Sikorski's Extension Theorem: Every homomorphism of a subalgebra \(B\) of a Boolean algebra \(A\) into a complete Boolean algebra \(B'\) can be extended to a homomorphism of \(A\) into \(B'\). Sikorski [1964], p. 141. |
14: | BPI: Every Boolean algebra has a prime ideal. |
139: | Using the discrete topology on 2, \(2^{\cal P(\omega)}\) is compact. |
389: | \(C(\aleph_0,2,\cal P({\Bbb R}))\): Every denumerable family of two element subsets of \(\cal P({\Bbb R})\) has a choice function. \ac{Keremedis} \cite{1999b}. |
Comment: