We have the following indirect implication of form equivalence classes:

50 \(\Rightarrow\) 389
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
50 \(\Rightarrow\) 14 A survey of recent results in set theory, Mathias, A.R.D. 1979, Period. Math. Hungar.
14 \(\Rightarrow\) 139
139 \(\Rightarrow\) 389

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
50:

Sikorski's  Extension Theorem: Every homomorphism of a subalgebra \(B\) of a Boolean algebra \(A\) into a complete Boolean algebra \(B'\) can be extended to a homomorphism of \(A\) into \(B'\). Sikorski [1964], p. 141.

14:

BPI: Every Boolean algebra has a prime ideal.

139:

Using the discrete topology on 2, \(2^{\cal P(\omega)}\) is compact.

389:

\(C(\aleph_0,2,\cal P({\Bbb R}))\): Every denumerable family of two element subsets of \(\cal P({\Bbb R})\) has a choice function.  \ac{Keremedis} \cite{1999b}.

Comment:

Back