We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
407 \(\Rightarrow\) 14 |
Effective equivalents of the Rasiowa-Sikorski lemma, Bacsich, P. D. 1972b, J. London Math. Soc. Ser. 2. |
14 \(\Rightarrow\) 153 |
The Baire category property and some notions of compactness, Fossy, J. 1998, J. London Math. Soc. |
153 \(\Rightarrow\) 10 |
The Baire category property and some notions of compactness, Fossy, J. 1998, J. London Math. Soc. |
10 \(\Rightarrow\) 288-n | clear |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
407: | Let \(B\) be a Boolean algebra, \(b\) a non-zero element of \(B\) and \(\{A_i: i\in\omega\}\) a sequence of subsets of \(B\) such that for each \(i\in\omega\), \(A_i\) has a supremum \(a_i\). Then there exists an ultrafilter \(D\) in \(B\) such that \(b\in D\) and, for each \(i\in\omega\), if \(a_i\in D\), then \(D\cap\ A_i\neq\emptyset\). |
14: | BPI: Every Boolean algebra has a prime ideal. |
153: | The closed unit ball of a Hilbert space is compact in the weak topology. |
10: | \(C(\aleph_{0},< \aleph_{0})\): Every denumerable family of non-empty finite sets has a choice function. |
288-n: | If \(n\in\omega-\{0,1\}\), \(C(\aleph_0,n)\): Every denumerable set of \(n\)-element sets has a choice function. |
Comment: