We have the following indirect implication of form equivalence classes:

384 \(\Rightarrow\) 374-n
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
384 \(\Rightarrow\) 14 "Maximal filters, continuity and choice principles", Herrlich, H. 1997, Quaestiones Math.
14 \(\Rightarrow\) 153 The Baire category property and some notions of compactness, Fossy, J. 1998, J. London Math. Soc.
153 \(\Rightarrow\) 10 The Baire category property and some notions of compactness, Fossy, J. 1998, J. London Math. Soc.
10 \(\Rightarrow\) 423 clear
423 \(\Rightarrow\) 374-n clear

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
384:

Closed Filter Extendability for \(T_1\) Spaces: Every closed filter in a \(T_1\) topological space can be extended to a maximal closed filter.

14:

BPI: Every Boolean algebra has a prime ideal.

153:

The closed unit ball of a Hilbert space is compact in the weak topology.

10:

\(C(\aleph_{0},< \aleph_{0})\):  Every denumerable family of non-empty finite sets has a choice function.

423:

\(\forall n\in \omega-\{o,1\}\), \(C(\aleph_0, n)\) : For every \(n\in  \omega - \{0,1\}\), every denumerable set of \(n\) element sets has a choice function.

374-n:

\(UT(\aleph_0,n,\aleph_0)\) for \(n\in\omega -\{0,1\}\): The union of a denumerable set of \(n\)-element sets is denumerable.

Comment:

Back