We have the following indirect implication of form equivalence classes:
| Implication | Reference |
|---|---|
| 317 \(\Rightarrow\) 14 |
Limitations on the Fraenkel-Mostowski method of independence proofs, Howard, P. 1973, J. Symbolic Logic |
| 14 \(\Rightarrow\) 153 |
The Baire category property and some notions of compactness, Fossy, J. 1998, J. London Math. Soc. |
| 153 \(\Rightarrow\) 10 |
The Baire category property and some notions of compactness, Fossy, J. 1998, J. London Math. Soc. |
| 10 \(\Rightarrow\) 288-n | clear |
| 288-n \(\Rightarrow\) 373-n | clear |
Here are the links and statements of the form equivalence classes referenced above:
| Howard-Rubin Number | Statement |
|---|---|
| 317: | Weak Sikorski Theorem: If \(B\) is a complete, well orderable Boolean algebra and \(f\) is a homomorphism of the Boolean algebra \(A'\) into \(B\) where \(A'\) is a subalgebra of the Boolean algebra \(A\), then \(f\) can be extended to a homomorphism of \(A\) into \(B\). |
| 14: | BPI: Every Boolean algebra has a prime ideal. |
| 153: | The closed unit ball of a Hilbert space is compact in the weak topology. |
| 10: | \(C(\aleph_{0},< \aleph_{0})\): Every denumerable family of non-empty finite sets has a choice function. |
| 288-n: | If \(n\in\omega-\{0,1\}\), \(C(\aleph_0,n)\): Every denumerable set of \(n\)-element sets has a choice function. |
| 373-n: | (For \(n\in\omega\), \(n\ge 2\).) \(PC(\aleph_0,n,\infty)\): Every denumerable set of \(n\)-element sets has an infinite subset with a choice function. |
Comment: