We have the following indirect implication of form equivalence classes:

50 \(\Rightarrow\) 18
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
50 \(\Rightarrow\) 14 A survey of recent results in set theory, Mathias, A.R.D. 1979, Period. Math. Hungar.
14 \(\Rightarrow\) 153 The Baire category property and some notions of compactness, Fossy, J. 1998, J. London Math. Soc.
153 \(\Rightarrow\) 10 The Baire category property and some notions of compactness, Fossy, J. 1998, J. London Math. Soc.
10 \(\Rightarrow\) 80 clear
80 \(\Rightarrow\) 18 clear

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
50:

Sikorski's  Extension Theorem: Every homomorphism of a subalgebra \(B\) of a Boolean algebra \(A\) into a complete Boolean algebra \(B'\) can be extended to a homomorphism of \(A\) into \(B'\). Sikorski [1964], p. 141.

14:

BPI: Every Boolean algebra has a prime ideal.

153:

The closed unit ball of a Hilbert space is compact in the weak topology.

10:

\(C(\aleph_{0},< \aleph_{0})\):  Every denumerable family of non-empty finite sets has a choice function.

80:

\(C(\aleph_{0},2)\):  Every denumerable set of  pairs has  a  choice function.

18:

\(PUT(\aleph_{0},2,\aleph_{0})\):  The union of a denumerable family of pairwise disjoint pairs has a denumerable subset.

Comment:

Back