We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
345 \(\Rightarrow\) 14 |
Topologie, Analyse Nonstandard et Axiome du Choix, Morillon, M. 1988, Universit\'e Blaise-Pascal |
14 \(\Rightarrow\) 153 |
The Baire category property and some notions of compactness, Fossy, J. 1998, J. London Math. Soc. |
153 \(\Rightarrow\) 10 |
The Baire category property and some notions of compactness, Fossy, J. 1998, J. London Math. Soc. |
10 \(\Rightarrow\) 80 | clear |
80 \(\Rightarrow\) 18 | clear |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
345: | Rasiowa-Sikorski Axiom: If \((B,\land,\lor)\) is a Boolean algebra, \(a\) is a non-zero element of \(B\), and \(\{X_n: n\in\omega\}\) is a denumerable set of subsets of \(B\) then there is a maximal filter \(F\) of \(B\) such that \(a\in F\) and for each \(n\in\omega\), if \(X_n\subseteq F\) and \(\bigwedge X_n\) exists then \(\bigwedge X_n \in F\). |
14: | BPI: Every Boolean algebra has a prime ideal. |
153: | The closed unit ball of a Hilbert space is compact in the weak topology. |
10: | \(C(\aleph_{0},< \aleph_{0})\): Every denumerable family of non-empty finite sets has a choice function. |
80: | \(C(\aleph_{0},2)\): Every denumerable set of pairs has a choice function. |
18: | \(PUT(\aleph_{0},2,\aleph_{0})\): The union of a denumerable family of pairwise disjoint pairs has a denumerable subset. |
Comment: