We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
317 \(\Rightarrow\) 14 |
Limitations on the Fraenkel-Mostowski method of independence proofs, Howard, P. 1973, J. Symbolic Logic |
14 \(\Rightarrow\) 63 | clear |
63 \(\Rightarrow\) 70 | clear |
70 \(\Rightarrow\) 206 | clear |
206 \(\Rightarrow\) 223 | clear |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
317: | Weak Sikorski Theorem: If \(B\) is a complete, well orderable Boolean algebra and \(f\) is a homomorphism of the Boolean algebra \(A'\) into \(B\) where \(A'\) is a subalgebra of the Boolean algebra \(A\), then \(f\) can be extended to a homomorphism of \(A\) into \(B\). |
14: | BPI: Every Boolean algebra has a prime ideal. |
63: |
\(SPI\): Weak ultrafilter principle: Every infinite set has a non-trivial ultrafilter.
|
70: | There is a non-trivial ultrafilter on \(\omega\). Jech [1973b], prob 5.24. |
206: | The existence of a non-principal ultrafilter: There exists an infinite set \(X\) and a non-principal ultrafilter on \(X\). |
223: | There is an infinite set \(X\) and a non-principal measure on \(\cal P(X)\). |
Comment: