We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
50 \(\Rightarrow\) 14 |
A survey of recent results in set theory, Mathias, A.R.D. 1979, Period. Math. Hungar. |
14 \(\Rightarrow\) 311 | The Banach-Tarski Paradox, Wagon, [1985] |
311 \(\Rightarrow\) 313 | clear |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
50: | Sikorski's Extension Theorem: Every homomorphism of a subalgebra \(B\) of a Boolean algebra \(A\) into a complete Boolean algebra \(B'\) can be extended to a homomorphism of \(A\) into \(B'\). Sikorski [1964], p. 141. |
14: | BPI: Every Boolean algebra has a prime ideal. |
311: | Abelian groups are amenable. (\(G\) is amenable if there is a finitely additive measure \(\mu\) on \(\cal P(G)\) such that \(\mu(G)=1\) and \(\forall A\subseteq G, \forall g\in G\), \(\mu(gA)=\mu(A)\).) |
313: | \(\Bbb Z\) (the set of integers under addition) is amenable. (\(G\) is {\it amenable} if there is a finitely additive measure \(\mu\) on \(\cal P(G)\) such that \(\mu(G) = 1\) and \(\forall A\subseteq G, \forall g\in G\), \(\mu(gA)=\mu(A)\).) |
Comment: