We have the following indirect implication of form equivalence classes:

407 \(\Rightarrow\) 386
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
407 \(\Rightarrow\) 14 Effective equivalents of the Rasiowa-Sikorski lemma, Bacsich, P. D. 1972b, J. London Math. Soc. Ser. 2.
14 \(\Rightarrow\) 385 clear
385 \(\Rightarrow\) 386 Products, the Baire category theorem, and the axiom of dependent choice, Herrlich-Keremedis-1999a[1999a], Topology and its Applications.

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
407:

Let \(B\) be a Boolean algebra, \(b\) a non-zero element of \(B\) and \(\{A_i: i\in\omega\}\) a sequence of subsets of \(B\) such that for each \(i\in\omega\), \(A_i\) has a supremum \(a_i\). Then there exists an ultrafilter \(D\) in \(B\) such that \(b\in D\) and, for each \(i\in\omega\), if \(a_i\in D\), then \(D\cap\ A_i\neq\emptyset\).

14:

BPI: Every Boolean algebra has a prime ideal.

385:

Countable Ultrafilter Theorem:  Every proper filter with a countable base over a set \(S\) (in \({\cal P}(S)\)) can be extended to an ultrafilter.

386:

Every B compact (pseudo)metric space is Baire.

Comment:

Back