We have the following indirect implication of form equivalence classes:

15 \(\Rightarrow\) 132
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
15 \(\Rightarrow\) 30 The Axiom of Choice, Jech, 1973b, page 53 problem 4.12
30 \(\Rightarrow\) 62 clear
62 \(\Rightarrow\) 132 Sequential compactness and the axiom of choice, Brunner, N. 1983b, Notre Dame J. Formal Logic

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
15:

\(KW(\infty,\infty)\) (KW), The Kinna-Wagner Selection Principle: For every  set \(M\) there is a function \(f\) such that for all \(A\in M\), if \(|A|>1\) then \(\emptyset\neq f(A)\subsetneq A\). (See Form 81(\(n\)).  

30:

Ordering Principle: Every set can be linearly ordered.

62:

\(C(\infty,< \aleph_{0})\):  Every set of non-empty finite  sets  has  a choice function.

132:

\(PC(\infty, <\aleph_0,\infty)\):  Every infinite family of finite  sets has an infinite subfamily with a choice function.

Comment:

Back