We have the following indirect implication of form equivalence classes:
| Implication | Reference |
|---|---|
| 15 \(\Rightarrow\) 323 | clear |
| 323 \(\Rightarrow\) 356 | clear |
Here are the links and statements of the form equivalence classes referenced above:
| Howard-Rubin Number | Statement |
|---|---|
| 15: | \(KW(\infty,\infty)\) (KW), The Kinna-Wagner Selection Principle: For every set \(M\) there is a function \(f\) such that for all \(A\in M\), if \(|A|>1\) then \(\emptyset\neq f(A)\subsetneq A\). (See Form 81(\(n\)). |
| 323: | \(KW(\infty,WO)\), The Kinna-Wagner Selection Principle for a family of well orderable sets: For every set \(M\) of well orderable sets there is a function \(f\) such that for all \(A\in M\), if \(|A| > 1\) then \(\emptyset\neq f(A)\subsetneq A\). (See Form 15.) |
| 356: | \(KW(\infty,\aleph_0)\), The Kinna-Wagner Selection Principle for a family of denumerable sets: For every set \(M\) of denumerable sets there is a function \(f\) such that for all \(A\in M\), if \(|A| > 1\) then \(\emptyset\neq f(A)\subsetneq A\). |
Comment: