We have the following indirect implication of form equivalence classes:

20 \(\Rightarrow\) 19
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
20 \(\Rightarrow\) 21 clear
21 \(\Rightarrow\) 23 Zermelo's Axiom of Choice, Moore, [1982]
23 \(\Rightarrow\) 25 Über dichte Ordnungstypen, Hausdorff, F. 1907, Jber. Deutsch. Math.
25 \(\Rightarrow\) 34 clear
34 \(\Rightarrow\) 19 Sur les fonctions representables analytiquement, Lebesgue, H. 1905, J. Math. Pures Appl.

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
20:

If \(\{A_{x}: x \in S \}\) and \(\{B_{x}: x \in  S\}\) are families  of pairwise disjoint sets and \( |A_{x}| = |B_{x}|\) for all \(x\in S\), then \(|\bigcup_{x\in S}A_{x}| = |\bigcup_{x\in S} B_{x}|\). Moore [1982] (1.4.12 and 1.7.8).

21:

If \(S\) is well ordered, \(\{A_{x}: x\in S\}\) and \(\{B_{x}: x\in S\}\) are families of pairwise disjoint sets, and \(|A_{x}| = |B_{x}|\) for all \(x\in S\), then \(|\bigcup_{x\in S}A_{x}|= |\bigcup_{x\in S} B_{x}|\). G\.

23:

\((\forall \alpha)(UT(\aleph_{\alpha},\aleph_{\alpha}, \aleph_{\alpha}))\): For every ordinal \(\alpha\), if \(A\) and every member of \(A\) has cardinality \(\aleph_{\alpha}\), then \(|\bigcup A| = \aleph _{\alpha }\).

25:

\(\aleph _{\beta +1}\) is regular for all ordinals \(\beta\).

34:

\(\aleph_{1}\) is regular.

19:

A real function is analytically representable if and only if it is in Baire's classification. G.Moore [1982], equation (2.3.1).

Comment:

Back