We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
20 \(\Rightarrow\) 121 | |
121 \(\Rightarrow\) 401 | clear |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
20: | If \(\{A_{x}: x \in S \}\) and \(\{B_{x}: x \in S\}\) are families of pairwise disjoint sets and \( |A_{x}| = |B_{x}|\) for all \(x\in S\), then \(|\bigcup_{x\in S}A_{x}| = |\bigcup_{x\in S} B_{x}|\). Moore [1982] (1.4.12 and 1.7.8). |
121: | \(C(LO,<\aleph_{0})\): Every linearly ordered set of non-empty finite sets has a choice function. |
401: | \(KW(LO,<\aleph_0)\), The Kinna-Wagner Selection Principle for a linearly ordered set of finite sets: For every linearly ordered set of finite sets \(M\) there is a function \(f\) such that for all \(A\in M\), if \(|A|>1\) then \(\emptyset\neq f(A)\subsetneq A\). |
Comment: