We have the following indirect implication of form equivalence classes:

20 \(\Rightarrow\) 401
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
20 \(\Rightarrow\) 121
121 \(\Rightarrow\) 401 clear

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
20:

If \(\{A_{x}: x \in S \}\) and \(\{B_{x}: x \in  S\}\) are families  of pairwise disjoint sets and \( |A_{x}| = |B_{x}|\) for all \(x\in S\), then \(|\bigcup_{x\in S}A_{x}| = |\bigcup_{x\in S} B_{x}|\). Moore [1982] (1.4.12 and 1.7.8).

121:

\(C(LO,<\aleph_{0})\): Every linearly ordered set of non-empty finite sets has a choice function.

401:

\(KW(LO,<\aleph_0)\), The Kinna-Wagner Selection Principle for a linearly ordered set of finite sets: For every linearly ordered set of finite sets \(M\) there is a function \(f\) such that for all \(A\in M\), if \(|A|>1\) then \(\emptyset\neq f(A)\subsetneq A\).

Comment:

Back