We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
23 \(\Rightarrow\) 25 |
Über dichte Ordnungstypen, Hausdorff, F. 1907, Jber. Deutsch. Math. |
25 \(\Rightarrow\) 34 | clear |
34 \(\Rightarrow\) 19 |
Sur les fonctions representables analytiquement, Lebesgue, H. 1905, J. Math. Pures Appl. |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
23: | \((\forall \alpha)(UT(\aleph_{\alpha},\aleph_{\alpha}, \aleph_{\alpha}))\): For every ordinal \(\alpha\), if \(A\) and every member of \(A\) has cardinality \(\aleph_{\alpha}\), then \(|\bigcup A| = \aleph _{\alpha }\). |
25: | \(\aleph _{\beta +1}\) is regular for all ordinals \(\beta\). |
34: | \(\aleph_{1}\) is regular. |
19: | A real function is analytically representable if and only if it is in Baire's classification. G.Moore [1982], equation (2.3.1). |
Comment: