We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
27 \(\Rightarrow\) 31 | clear |
31 \(\Rightarrow\) 419 |
Metric spaces and the axiom of choice, De-la-Cruz-Hall-Howard-Keremedis-Rubin-2002A[2002A], Math. Logic Quart. |
419 \(\Rightarrow\) 420 |
Metric spaces and the axiom of choice, De-la-Cruz-Hall-Howard-Keremedis-Rubin-2002A[2002A], Math. Logic Quart. |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
27: | \((\forall \alpha)( UT(\aleph_{0},\aleph_{\alpha}, \aleph_{\alpha}))\): The union of denumerably many sets each of power \(\aleph_{\alpha }\) has power \(\aleph_{\alpha}\). Moore, G. [1982], p 36. |
31: | \(UT(\aleph_{0},\aleph_{0},\aleph_{0})\): The countable union theorem: The union of a denumerable set of denumerable sets is denumerable. |
419: | UT(\(\aleph_0\),cuf,cuf): The union of a denumerable set of cuf sets is cuf. (A set is cuf if it is a countable union of finite sets.) |
420: | \(UT(\aleph_0\),\(\aleph_0\),cuf): The union of a denumerable set of denumerable sets is cuf. |
Comment: