We have the following indirect implication of form equivalence classes:
| Implication | Reference |
|---|---|
| 109 \(\Rightarrow\) 28-p | clear |
| 28-p \(\Rightarrow\) 427 | clear |
Here are the links and statements of the form equivalence classes referenced above:
| Howard-Rubin Number | Statement |
|---|---|
| 109: | Every field \(F\) and every vector space \(V\) over \(F\) has the property that each linearly independent set \(A\subseteq V\) can be extended to a basis. H.Rubin/J.~Rubin [1985], pp 119ff. |
| 28-p: | (Where \(p\) is a prime) AL20(\(\mathbb Z_p\)): Every vector space \(V\) over \(\mathbb Z_p\) has the property that every linearly independent subset can be extended to a basis. (\(\mathbb Z_p\) is the \(p\) element field.) Rubin, H./Rubin, J. [1985], p. 119, Statement AL20 |
| 427: | \(\exists F\) AL20(\(F\)): There is a field \(F\) such that every vector space \(V\) over \(F\) has the property that every independent subset of \(V\) can be extended to a basis. \ac{Bleicher} \cite{1964}, \ac{Rubin, H.\/Rubin, J \cite{1985, p.119, AL20}. |
Comment: