We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
28-p \(\Rightarrow\) 427 | clear |
427 \(\Rightarrow\) 428 | clear |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
28-p: | (Where \(p\) is a prime) AL20(\(\mathbb Z_p\)): Every vector space \(V\) over \(\mathbb Z_p\) has the property that every linearly independent subset can be extended to a basis. (\(\mathbb Z_p\) is the \(p\) element field.) Rubin, H./Rubin, J. [1985], p. 119, Statement AL20 |
427: | \(\exists F\) AL20(\(F\)): There is a field \(F\) such that every vector space \(V\) over \(F\) has the property that every independent subset of \(V\) can be extended to a basis. \ac{Bleicher} \cite{1964}, \ac{Rubin, H.\/Rubin, J \cite{1985, p.119, AL20}. |
428: | \(\exists F\) B\((F)\): There is a field \(F\) such that every vector space over \(F\) has a basis. \ac{Bleicher} \cite{1964}, \ac{Rubin, H.\/Rubin, J \cite{1985, p.119, B}. |
Comment: