We have the following indirect implication of form equivalence classes:

49 \(\Rightarrow\) 389
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
49 \(\Rightarrow\) 30 clear
30 \(\Rightarrow\) 10 clear
10 \(\Rightarrow\) 80 clear
80 \(\Rightarrow\) 389 clear

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
49:

Order Extension Principle: Every partial ordering can be extended to a linear ordering.  Tarski [1924], p 78.

30:

Ordering Principle: Every set can be linearly ordered.

10:

\(C(\aleph_{0},< \aleph_{0})\):  Every denumerable family of non-empty finite sets has a choice function.

80:

\(C(\aleph_{0},2)\):  Every denumerable set of  pairs has  a  choice function.

389:

\(C(\aleph_0,2,\cal P({\Bbb R}))\): Every denumerable family of two element subsets of \(\cal P({\Bbb R})\) has a choice function.  \ac{Keremedis} \cite{1999b}.

Comment:

Back