We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
295 \(\Rightarrow\) 30 |
"Dense orderings, partitions, and weak forms of choice", Gonzalez, C. 1995a, Fund. Math. |
30 \(\Rightarrow\) 198 | clear |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
295: | DO: Every infinite set has a dense linear ordering. |
30: | Ordering Principle: Every set can be linearly ordered. |
198: | For every set \(S\), if the only linearly orderable subsets of \(S\) are the finite subsets of \(S\), then either \(S\) is finite or \(S\) has an amorphous subset. |
Comment: