We have the following indirect implication of form equivalence classes:

295 \(\Rightarrow\) 198
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
295 \(\Rightarrow\) 30 "Dense orderings, partitions, and weak forms of choice", Gonzalez, C. 1995a, Fund. Math.
30 \(\Rightarrow\) 198 clear

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
295:

DO:  Every infinite set has a dense linear ordering.

30:

Ordering Principle: Every set can be linearly ordered.

198:

For every set \(S\), if the only linearly orderable subsets of \(S\) are the finite subsets of \(S\), then either \(S\) is finite or \(S\) has an amorphous subset.

Comment:

Back