We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
345 \(\Rightarrow\) 14 |
Topologie, Analyse Nonstandard et Axiome du Choix, Morillon, M. 1988, Universit\'e Blaise-Pascal |
14 \(\Rightarrow\) 49 |
A survey of recent results in set theory, Mathias, A.R.D. 1979, Period. Math. Hungar. |
49 \(\Rightarrow\) 30 | clear |
30 \(\Rightarrow\) 83 | note-81 |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
345: | Rasiowa-Sikorski Axiom: If \((B,\land,\lor)\) is a Boolean algebra, \(a\) is a non-zero element of \(B\), and \(\{X_n: n\in\omega\}\) is a denumerable set of subsets of \(B\) then there is a maximal filter \(F\) of \(B\) such that \(a\in F\) and for each \(n\in\omega\), if \(X_n\subseteq F\) and \(\bigwedge X_n\) exists then \(\bigwedge X_n \in F\). |
14: | BPI: Every Boolean algebra has a prime ideal. |
49: | Order Extension Principle: Every partial ordering can be extended to a linear ordering. Tarski [1924], p 78. |
30: | Ordering Principle: Every set can be linearly ordered. |
83: | \(E(I,II)\) Howard/Yorke [1989]: \(T\)-finite is equivalent to finite. |
Comment: