We have the following indirect implication of form equivalence classes:

345 \(\Rightarrow\) 127
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
345 \(\Rightarrow\) 14 Topologie, Analyse Nonstandard et Axiome du Choix, Morillon, M. 1988, Universit\'e Blaise-Pascal
14 \(\Rightarrow\) 49 A survey of recent results in set theory, Mathias, A.R.D. 1979, Period. Math. Hungar.
49 \(\Rightarrow\) 30 clear
30 \(\Rightarrow\) 62 clear
62 \(\Rightarrow\) 64 Amorphe Potenzen kompakter Raume, Brunner, N. 1984b, Arch. Math. Logik Grundlagenforschung
64 \(\Rightarrow\) 127 Amorphe Potenzen kompakter Raume, Brunner, N. 1984b, Arch. Math. Logik Grundlagenforschung

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
345:

Rasiowa-Sikorski Axiom:  If \((B,\land,\lor)\) is a Boolean algebra, \(a\) is a non-zero element of \(B\), and \(\{X_n: n\in\omega\}\) is a denumerable set of subsets of \(B\) then there is a maximal filter \(F\) of \(B\) such that \(a\in F\) and for each \(n\in\omega\), if \(X_n\subseteq F\) and \(\bigwedge X_n\) exists then \(\bigwedge X_n \in F\).

14:

BPI: Every Boolean algebra has a prime ideal.

49:

Order Extension Principle: Every partial ordering can be extended to a linear ordering.  Tarski [1924], p 78.

30:

Ordering Principle: Every set can be linearly ordered.

62:

\(C(\infty,< \aleph_{0})\):  Every set of non-empty finite  sets  has  a choice function.

64:

\(E(I,Ia)\) There are no amorphous sets. (Equivalently, every infinite set is the union of two disjoint infinite sets.)

127:

An amorphous power of a compact \(T_2\) space, which as a set is well orderable, is well orderable.

Comment:

Back