We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
152 \(\Rightarrow\) 4 |
Russell's alternative to the axiom of choice, Howard, P. 1992, Z. Math. Logik Grundlagen Math. note-27 note-27 note-27 |
4 \(\Rightarrow\) 9 | clear |
9 \(\Rightarrow\) 10 | Zermelo's Axiom of Choice, Moore, 1982, 322 |
10 \(\Rightarrow\) 423 | clear |
423 \(\Rightarrow\) 374-n | clear |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
152: | \(D_{\aleph_{0}}\): Every non-well-orderable set is the union of a pairwise disjoint, well orderable family of denumerable sets. (See note 27 for \(D_{\kappa}\), \(\kappa\) a well ordered cardinal.) |
4: | Every infinite set is the union of some disjoint family of denumerable subsets. (Denumerable means \(\cong \aleph_0\).) |
9: | Finite \(\Leftrightarrow\) Dedekind finite: \(W_{\aleph_{0}}\) Jech [1973b]: \(E(I,IV)\) Howard/Yorke [1989]): Every Dedekind finite set is finite. |
10: | \(C(\aleph_{0},< \aleph_{0})\): Every denumerable family of non-empty finite sets has a choice function. |
423: | \(\forall n\in \omega-\{o,1\}\), \(C(\aleph_0, n)\) : For every \(n\in \omega - \{0,1\}\), every denumerable set of \(n\) element sets has a choice function. |
374-n: | \(UT(\aleph_0,n,\aleph_0)\) for \(n\in\omega -\{0,1\}\): The union of a denumerable set of \(n\)-element sets is denumerable. |
Comment: