We have the following indirect implication of form equivalence classes:

49 \(\Rightarrow\) 11
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
49 \(\Rightarrow\) 30 clear
30 \(\Rightarrow\) 62 clear
62 \(\Rightarrow\) 378 clear
378 \(\Rightarrow\) 11 clear

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
49:

Order Extension Principle: Every partial ordering can be extended to a linear ordering.  Tarski [1924], p 78.

30:

Ordering Principle: Every set can be linearly ordered.

62:

\(C(\infty,< \aleph_{0})\):  Every set of non-empty finite  sets  has  a choice function.

378:

Restricted Choice for Families of Well Ordered Sets:  For every infinite set \(X\) there is an infinite subset \(Y\) of \(X\) such that the family of non-empty well orderable subsets of \(Y\) has a choice function.

11:

A Form of Restricted Choice for Families of Finite Sets: For every infinite set \(A\), \(A\) has an infinite subset \(B\) such that for every \(n\in\omega\), \(n>0\), the set of all \(n\) element subsets of \(B\) has a choice function. De la Cruz/Di Prisco [1998b]

Comment:

Back