We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
352 \(\Rightarrow\) 31 |
On first and second countable spaces and the axiom of choice, Gutierres, G 2004, Topology and its Applications. |
31 \(\Rightarrow\) 32 |
L’axiome de M. Zermelo et son rˆole dans la th´eorie des ensembles et l’analyse, Sierpi'nski, W. 1918, Bull. Int. Acad. Sci. Cracovie Cl. Math. Nat. |
32 \(\Rightarrow\) 10 | clear |
10 \(\Rightarrow\) 80 | clear |
80 \(\Rightarrow\) 18 | clear |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
352: | A countable product of second countable spaces is second countable. |
31: | \(UT(\aleph_{0},\aleph_{0},\aleph_{0})\): The countable union theorem: The union of a denumerable set of denumerable sets is denumerable. |
32: | \(C(\aleph_0,\le\aleph_0)\): Every denumerable set of non-empty countable sets has a choice function. |
10: | \(C(\aleph_{0},< \aleph_{0})\): Every denumerable family of non-empty finite sets has a choice function. |
80: | \(C(\aleph_{0},2)\): Every denumerable set of pairs has a choice function. |
18: | \(PUT(\aleph_{0},2,\aleph_{0})\): The union of a denumerable family of pairwise disjoint pairs has a denumerable subset. |
Comment: