We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
354 \(\Rightarrow\) 32 |
Disasters in metric topology without choice, Keremedis, K. 2002, Comment. Math. Univ. Carolinae |
32 \(\Rightarrow\) 10 | clear |
10 \(\Rightarrow\) 80 | clear |
80 \(\Rightarrow\) 18 | clear |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
354: | A countable product of separable \(T_2\) spaces is separable. |
32: | \(C(\aleph_0,\le\aleph_0)\): Every denumerable set of non-empty countable sets has a choice function. |
10: | \(C(\aleph_{0},< \aleph_{0})\): Every denumerable family of non-empty finite sets has a choice function. |
80: | \(C(\aleph_{0},2)\): Every denumerable set of pairs has a choice function. |
18: | \(PUT(\aleph_{0},2,\aleph_{0})\): The union of a denumerable family of pairwise disjoint pairs has a denumerable subset. |
Comment: