We have the following indirect implication of form equivalence classes:

354 \(\Rightarrow\) 357
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
354 \(\Rightarrow\) 32 Disasters in metric topology without choice, Keremedis, K. 2002, Comment. Math. Univ. Carolinae
32 \(\Rightarrow\) 357 clear

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
354:

A countable product of separable \(T_2\) spaces is separable.

32:

\(C(\aleph_0,\le\aleph_0)\): Every denumerable set of non-empty countable sets  has a choice function.

357:

\(KW(\aleph_0,\aleph_0)\), The Kinna-Wagner Selection Principle for a denumerable family of denumerable sets: For every denumerable set \(M\) of denumerable sets there is a function \(f\) such that for all \(A\in M\), if \(|A| > 1\) then \(\emptyset\neq f(A)\subsetneq A\).

Comment:

Back