We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
245 \(\Rightarrow\) 34 |
The monadic theory of \(\omega_1\), Litman, A. 1976, Israel J. Math. |
34 \(\Rightarrow\) 19 |
Sur les fonctions representables analytiquement, Lebesgue, H. 1905, J. Math. Pures Appl. |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
245: | There is a function \(f :\omega_1\rightarrow \omega^{\omega}_1\) such that for every \(\alpha\), \(0 < \alpha < \omega_1\), \(f(\alpha )\) is a function from \(\omega\) onto \(\alpha\). |
34: | \(\aleph_{1}\) is regular. |
19: | A real function is analytically representable if and only if it is in Baire's classification. G.Moore [1982], equation (2.3.1). |
Comment: