We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
36 \(\Rightarrow\) 62 |
On Loeb and weakly Loeb Hausdorff spaces, Tachtsis, E. 2000, Math. Japon. |
62 \(\Rightarrow\) 64 |
Amorphe Potenzen kompakter Raume, Brunner, N. 1984b, Arch. Math. Logik Grundlagenforschung |
64 \(\Rightarrow\) 390 | clear |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
36: | Compact T\(_2\) spaces are Loeb. (A space is Loeb if the set of non-empty closed sets has a choice function.) |
62: | \(C(\infty,< \aleph_{0})\): Every set of non-empty finite sets has a choice function. |
64: | \(E(I,Ia)\) There are no amorphous sets. (Equivalently, every infinite set is the union of two disjoint infinite sets.) |
390: | Every infinite set can be partitioned either into two infinite sets or infinitely many sets, each of which has at least two elements. Ash [1983]. |
Comment: