We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
36 \(\Rightarrow\) 62 |
On Loeb and weakly Loeb Hausdorff spaces, Tachtsis, E. 2000, Math. Japon. |
62 \(\Rightarrow\) 378 | clear |
378 \(\Rightarrow\) 11 | clear |
11 \(\Rightarrow\) 12 | clear |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
36: | Compact T\(_2\) spaces are Loeb. (A space is Loeb if the set of non-empty closed sets has a choice function.) |
62: | \(C(\infty,< \aleph_{0})\): Every set of non-empty finite sets has a choice function. |
378: | Restricted Choice for Families of Well Ordered Sets: For every infinite set \(X\) there is an infinite subset \(Y\) of \(X\) such that the family of non-empty well orderable subsets of \(Y\) has a choice function. |
11: | A Form of Restricted Choice for Families of Finite Sets: For every infinite set \(A\), \(A\) has an infinite subset \(B\) such that for every \(n\in\omega\), \(n>0\), the set of all \(n\) element subsets of \(B\) has a choice function. De la Cruz/Di Prisco [1998b] |
12: | A Form of Restricted Choice for Families of Finite Sets: For every infinite set \(A\) and every \(n\in\omega\), there is an infinite subset \(B\) of \(A\) such the set of all \(n\) element subsets of \(B\) has a choice function. De la Cruz/Di Prisco} [1998b] |
Comment: