We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
44 \(\Rightarrow\) 39 | The Axiom of Choice, Jech, 1973b, page 120 theorem 8.1 |
39 \(\Rightarrow\) 8 | clear |
8 \(\Rightarrow\) 24 | clear |
24 \(\Rightarrow\) 26 | Zermelo's Axiom of Choice, Moore, 1982, 66 Le¸cons sur la th´eorie des fonctions, Borel, [1898] |
26 \(\Rightarrow\) 209 | note-72 |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
44: | \(DC(\aleph _{1})\): Given a relation \(R\) such that for every subset \(Y\) of a set \(X\) with \(|Y| < \aleph_{1}\) there is an \(x \in X\) with \(Y \mathrel R x\), then there is a function \(f: \aleph_{1} \rightarrow X\) such that \((\forall\beta < \aleph_{1}) (\{f(\gamma ): \gamma < b \} \mathrel R f(\beta))\). |
39: | \(C(\aleph_{1},\infty)\): Every set \(A\) of non-empty sets such that \(\vert A\vert = \aleph_{1}\) has a choice function. Moore, G. [1982], p. 202. |
8: | \(C(\aleph_{0},\infty)\): |
24: | \(C(\aleph_0,2^{(2^{\aleph_0})})\): Every denumerable collection of non-empty sets each with power \(2^{(2^{\aleph_{0}})}\) has a choice function. |
26: | \(UT(\aleph_{0},2^{\aleph_{0}},2^{\aleph_{0}})\): The union of denumerably many sets each of power \(2^{\aleph _{0}}\) has power \(2^{\aleph_{0}}\). |
209: | There is an ordinal \(\alpha\) such that for all \(X\), if \(X\) is a denumerable union of denumerable sets then \({\cal P}(X)\) cannot be partitioned into \(\aleph_{\alpha}\) non-empty sets. |
Comment: