We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
7 \(\Rightarrow\) 9 |
On the existence of large sets of Dedekind cardinals, Tarski, A. 1965, Notices Amer. Math. Soc. The Axiom of Choice, Jech, 1973b, page 161 problem 11.6 |
9 \(\Rightarrow\) 10 | Zermelo's Axiom of Choice, Moore, 1982, 322 |
10 \(\Rightarrow\) 249 |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
7: | There is no infinite decreasing sequence of cardinals. |
9: | Finite \(\Leftrightarrow\) Dedekind finite: \(W_{\aleph_{0}}\) Jech [1973b]: \(E(I,IV)\) Howard/Yorke [1989]): Every Dedekind finite set is finite. |
10: | \(C(\aleph_{0},< \aleph_{0})\): Every denumerable family of non-empty finite sets has a choice function. |
249: | If \(T\) is an infinite tree in which every element has exactly 2 immediate successors then \(T\) has an infinite branch. |
Comment: