We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
44 \(\Rightarrow\) 39 | The Axiom of Choice, Jech, 1973b, page 120 theorem 8.1 |
39 \(\Rightarrow\) 8 | clear |
8 \(\Rightarrow\) 27 | clear |
27 \(\Rightarrow\) 31 | clear |
31 \(\Rightarrow\) 32 |
L’axiome de M. Zermelo et son rˆole dans la th´eorie des ensembles et l’analyse, Sierpi'nski, W. 1918, Bull. Int. Acad. Sci. Cracovie Cl. Math. Nat. |
32 \(\Rightarrow\) 350 | clear |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
44: | \(DC(\aleph _{1})\): Given a relation \(R\) such that for every subset \(Y\) of a set \(X\) with \(|Y| < \aleph_{1}\) there is an \(x \in X\) with \(Y \mathrel R x\), then there is a function \(f: \aleph_{1} \rightarrow X\) such that \((\forall\beta < \aleph_{1}) (\{f(\gamma ): \gamma < b \} \mathrel R f(\beta))\). |
39: | \(C(\aleph_{1},\infty)\): Every set \(A\) of non-empty sets such that \(\vert A\vert = \aleph_{1}\) has a choice function. Moore, G. [1982], p. 202. |
8: | \(C(\aleph_{0},\infty)\): |
27: | \((\forall \alpha)( UT(\aleph_{0},\aleph_{\alpha}, \aleph_{\alpha}))\): The union of denumerably many sets each of power \(\aleph_{\alpha }\) has power \(\aleph_{\alpha}\). Moore, G. [1982], p 36. |
31: | \(UT(\aleph_{0},\aleph_{0},\aleph_{0})\): The countable union theorem: The union of a denumerable set of denumerable sets is denumerable. |
32: | \(C(\aleph_0,\le\aleph_0)\): Every denumerable set of non-empty countable sets has a choice function. |
350: | \(MC(\aleph_0,\aleph_0)\): For every denumerable set \(X\) of non-empty denumerable sets there is a function \(f\) such that for all \(x\in X\), \(f(x)\) is a finite, non-empty subset of \(x\). |
Comment: