We have the following indirect implication of form equivalence classes:

44 \(\Rightarrow\) 74
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
44 \(\Rightarrow\) 39 The Axiom of Choice, Jech, 1973b, page 120 theorem 8.1
39 \(\Rightarrow\) 8 clear
8 \(\Rightarrow\) 94 clear
94 \(\Rightarrow\) 74 note-10

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
44:

\(DC(\aleph _{1})\):  Given a relation \(R\) such that for every  subset \(Y\) of a set \(X\) with \(|Y| < \aleph_{1}\) there is an \(x \in  X\)  with \(Y \mathrel R x\), then there is a function \(f: \aleph_{1} \rightarrow  X\) such that \((\forall\beta < \aleph_{1}) (\{f(\gamma ): \gamma < b \} \mathrel R f(\beta))\).

39:

\(C(\aleph_{1},\infty)\): Every set \(A\) of non-empty sets such that \(\vert A\vert = \aleph_{1}\) has a choice function. Moore, G. [1982], p. 202.

8:

\(C(\aleph_{0},\infty)\):

94:

\(C(\aleph_{0},\infty,{\Bbb R})\): Every denumerable family of non-empty sets of reals  has a choice function. Jech [1973b], p 148 prob 10.1.

74:

For every \(A\subseteq\Bbb R\) the following are equivalent:

  1. \(A\) is closed and bounded.
  2. Every sequence \(\{x_{n}\}\subseteq A\) has a convergent subsequence with limit in A.
Jech [1973b], p 21.

Comment:

Back