We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
44 \(\Rightarrow\) 39 | The Axiom of Choice, Jech, 1973b, page 120 theorem 8.1 |
39 \(\Rightarrow\) 8 | clear |
8 \(\Rightarrow\) 126 | clear |
126 \(\Rightarrow\) 131 | clear |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
44: | \(DC(\aleph _{1})\): Given a relation \(R\) such that for every subset \(Y\) of a set \(X\) with \(|Y| < \aleph_{1}\) there is an \(x \in X\) with \(Y \mathrel R x\), then there is a function \(f: \aleph_{1} \rightarrow X\) such that \((\forall\beta < \aleph_{1}) (\{f(\gamma ): \gamma < b \} \mathrel R f(\beta))\). |
39: | \(C(\aleph_{1},\infty)\): Every set \(A\) of non-empty sets such that \(\vert A\vert = \aleph_{1}\) has a choice function. Moore, G. [1982], p. 202. |
8: | \(C(\aleph_{0},\infty)\): |
126: | \(MC(\aleph_0,\infty)\), Countable axiom of multiple choice: For every denumerable set \(X\) of non-empty sets there is a function \(f\) such that for all \(y\in X\), \(f(y)\) is a non-empty finite subset of \(y\). |
131: | \(MC_\omega(\aleph_0,\infty)\): For every denumerable family \(X\) of pairwise disjoint non-empty sets, there is a function \(f\) such that for each \(x\in X\), f(x) is a non-empty countable subset of \(x\). |
Comment: