We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
40 \(\Rightarrow\) 39 | clear |
39 \(\Rightarrow\) 8 | clear |
8 \(\Rightarrow\) 9 | Was sind und was sollen die Zollen?, Dedekind, [1888] |
9 \(\Rightarrow\) 128 |
Realisierung und Auswahlaxiom, Brunner, N. 1984f, Arch. Math. (Brno) |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
40: | \(C(WO,\infty)\): Every well orderable set of non-empty sets has a choice function. Moore, G. [1982], p 325. |
39: | \(C(\aleph_{1},\infty)\): Every set \(A\) of non-empty sets such that \(\vert A\vert = \aleph_{1}\) has a choice function. Moore, G. [1982], p. 202. |
8: | \(C(\aleph_{0},\infty)\): |
9: | Finite \(\Leftrightarrow\) Dedekind finite: \(W_{\aleph_{0}}\) Jech [1973b]: \(E(I,IV)\) Howard/Yorke [1989]): Every Dedekind finite set is finite. |
128: | Aczel's Realization Principle: On every infinite set there is a Hausdorff topology with an infinite set of non-isolated points. |
Comment: