We have the following indirect implication of form equivalence classes:

40 \(\Rightarrow\) 167
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
40 \(\Rightarrow\) 39 clear
39 \(\Rightarrow\) 8 clear
8 \(\Rightarrow\) 9 Was sind und was sollen die Zollen?, Dedekind, [1888]
9 \(\Rightarrow\) 376 clear
376 \(\Rightarrow\) 167 clear

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
40:

\(C(WO,\infty)\):  Every well orderable set of non-empty sets has a choice function. Moore, G. [1982], p 325.

39:

\(C(\aleph_{1},\infty)\): Every set \(A\) of non-empty sets such that \(\vert A\vert = \aleph_{1}\) has a choice function. Moore, G. [1982], p. 202.

8:

\(C(\aleph_{0},\infty)\):

9:

Finite \(\Leftrightarrow\) Dedekind finite: \(W_{\aleph_{0}}\) Jech [1973b]: \(E(I,IV)\) Howard/Yorke [1989]): Every Dedekind finite set is finite.

376:

Restricted Kinna Wagner Principle:  For every infinite set \(X\) there is an infinite subset \(Y\) of \(X\) and a function \(f\) such that for every \(z\subseteq Y\), if \(|z| \ge 2\) then \(f(z)\) is a non-empty proper subset of \(z\).

167:

\(PKW(\aleph_{0},\ge 2,\infty)\), Partial Kinna-Wagner Principle:  For every denumerable family \(F\) such that for all \(x\in F\), \(|x|\ge 2\), there is an infinite subset \(H\subseteq F\) and a function \(f\) such that for all \(x\in H\), \(\emptyset\neq f(x) \subsetneq x\).

Comment:

Back