We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
113 \(\Rightarrow\) 8 |
Tychonoff's theorem implies AC, Kelley, J.L. 1950, Fund. Math. Products of compact spaces in the least permutation model, Brunner, N. 1985a, Z. Math. Logik Grundlagen Math. |
8 \(\Rightarrow\) 342-n | clear |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
113: | Tychonoff's Compactness Theorem for Countably Many Spaces: The product of a countable set of compact spaces is compact. |
8: | \(C(\aleph_{0},\infty)\): |
342-n: | (For \(n\in\omega\), \(n\ge 2\).) \(PC(\infty,n,\infty)\): Every infinite family of \(n\)-element sets has an infinite subfamily with a choice function. (See Form 166.) |
Comment: