We have the following indirect implication of form equivalence classes:

202 \(\Rightarrow\) 361
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
202 \(\Rightarrow\) 40 clear
40 \(\Rightarrow\) 39 clear
39 \(\Rightarrow\) 8 clear
8 \(\Rightarrow\) 361 Zermelo's Axiom of Choice, Moore, 1982, page 325

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
202:

\(C(LO,\infty)\): Every linearly ordered family of non-empty sets has  a choice function.

40:

\(C(WO,\infty)\):  Every well orderable set of non-empty sets has a choice function. Moore, G. [1982], p 325.

39:

\(C(\aleph_{1},\infty)\): Every set \(A\) of non-empty sets such that \(\vert A\vert = \aleph_{1}\) has a choice function. Moore, G. [1982], p. 202.

8:

\(C(\aleph_{0},\infty)\):

361:

In \(\Bbb R\), the union of a denumerable number of analytic sets is analytic. G. Moore [1982], pp 181 and 325.

Comment:

Back