We have the following indirect implication of form equivalence classes:

202 \(\Rightarrow\) 390
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
202 \(\Rightarrow\) 40 clear
40 \(\Rightarrow\) 39 clear
39 \(\Rightarrow\) 8 clear
8 \(\Rightarrow\) 9 Was sind und was sollen die Zollen?, Dedekind, [1888]
9 \(\Rightarrow\) 64 The independence of various definitions of finiteness, Levy, A. 1958, Fund. Math.
clear
64 \(\Rightarrow\) 390 clear

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
202:

\(C(LO,\infty)\): Every linearly ordered family of non-empty sets has  a choice function.

40:

\(C(WO,\infty)\):  Every well orderable set of non-empty sets has a choice function. Moore, G. [1982], p 325.

39:

\(C(\aleph_{1},\infty)\): Every set \(A\) of non-empty sets such that \(\vert A\vert = \aleph_{1}\) has a choice function. Moore, G. [1982], p. 202.

8:

\(C(\aleph_{0},\infty)\):

9:

Finite \(\Leftrightarrow\) Dedekind finite: \(W_{\aleph_{0}}\) Jech [1973b]: \(E(I,IV)\) Howard/Yorke [1989]): Every Dedekind finite set is finite.

64:

\(E(I,Ia)\) There are no amorphous sets. (Equivalently, every infinite set is the union of two disjoint infinite sets.)

390:

Every infinite set can be partitioned either into two infinite sets or infinitely many sets, each of which has at least two elements. Ash [1983].

Comment:

Back