We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
39 \(\Rightarrow\) 8 | clear |
8 \(\Rightarrow\) 342-n | clear |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
39: | \(C(\aleph_{1},\infty)\): Every set \(A\) of non-empty sets such that \(\vert A\vert = \aleph_{1}\) has a choice function. Moore, G. [1982], p. 202. |
8: | \(C(\aleph_{0},\infty)\): |
342-n: | (For \(n\in\omega\), \(n\ge 2\).) \(PC(\infty,n,\infty)\): Every infinite family of \(n\)-element sets has an infinite subfamily with a choice function. (See Form 166.) |
Comment: