We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
286 \(\Rightarrow\) 40 | S´eminaire d’Analyse 1992, Morillon, 1991b, |
40 \(\Rightarrow\) 43 |
Consistency results for $ZF$, Jensen, R.B. 1967, Notices Amer. Math. Soc. On cardinals and their successors, Jech, T. 1966a, Bull. Acad. Polon. Sci. S'er. Sci. Math. Astronom. Phys. |
43 \(\Rightarrow\) 106 |
Injectivity, projectivity and the axiom of choice, Blass, A. 1979, Trans. Amer. Math. Soc. On the role of the Baire category theorem and dependent choice in the foundations of logic, Goldblatt, R. 1985, J. Symbolic Logic |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
286: | Extended Krein-Milman Theorem: Let K be a quasicompact (sometimes called convex-compact), convex subset of a locally convex topological vector space, then K has an extreme point. H. Rubin/J. Rubin [1985], p. 177-178. |
40: | \(C(WO,\infty)\): Every well orderable set of non-empty sets has a choice function. Moore, G. [1982], p 325. |
43: | \(DC(\omega)\) (DC), Principle of Dependent Choices: If \(S\) is a relation on a non-empty set \(A\) and \((\forall x\in A) (\exists y\in A)(x S y)\) then there is a sequence \(a(0), a(1), a(2), \ldots\) of elements of \(A\) such that \((\forall n\in\omega)(a(n)\mathrel S a(n+1))\). See Tarski [1948], p 96, Levy [1964], p. 136. |
106: | Baire Category Theorem for Compact Hausdorff Spaces: Every compact Hausdorff space is Baire. |
Comment: